首页 技术 正文
技术 2022年11月15日
0 收藏 985 点赞 3,507 浏览 3254 个字

\(\mathcal{Description}\)

  Link. 做题原因:题目名。

  给定一个长度 \(n-1\) 的序列 \(\{a_2,a_3,\cdots,a_n\}\),其描述了一棵 \(n\) 个点的有根树—— \(1\) 为根节点,\(i~(i\in(1,n])\) 结点的父亲是 \(a_i~(a_i\in[1,i))\)。接下来有 \(q\) 次操作:

  1. 给定 \(l,r,x\),\(\forall i\in[l,r],~a_i\leftarrow \max\{a_i-x,1\}\);
  2. 给定 \(u,v\),求 \(u,v\) 在当前树上的 LCA。

  \(n,q\le10^5\)。

\(\mathcal{Solution}\)

  树是阿绫给的,操作是天依说的,所以题是一定会做的。

  首先明确一点:这是到题如其名的树题还是一道序列题。

  鉴于随便修改几下就可以把树拍得面目全非,前者可以叉掉,这就是道序列题。

  接着,思考 LCA 维护的形式,倍增太离谱了,考虑类似树剖维护 top 的方法——我们并不需要让 top 做到如树剖那样 \(\log\) 级别的优秀,这样才能应对灵活的修改。

  唠半天啦,这道题就是一道分块维护序列的题。


  首先根号分块,定义一个关键的 \(\operatorname{top}(u)\) 表示当前树上 \(u\) 的祖先中,不与 \(u\) 在同一块中的编号最大的结点,若不存在,则 \(\operatorname{top}(u)=1\)。发现美妙性质:跳 \(\operatorname{top}\) 链是 \(\mathcal O(\sqrt n)\) 的,收束前文提到的树剖思想;且暴力计算 \(\operatorname{top}(u)\) 是 \(\mathcal O(n)\) 的,非常方便。接了来只需要尝试维护这一信息。

  对于修改,散点暴力扫即可(注意一定是从左到右更新)。对于整块,我们似乎还是需要 \(\mathcal O(\sqrt n)\) 去重新更新 \(\operatorname{top}\)?

  答案是肯定的,但不完全——若一个整块被修改次数超过块的大小,则必然有 \(\operatorname{top}(u)=a_u\)。表明我们确实需要对于 \(\mathcal O(\sqrt n)\) 个块中的每一个,以 \(\mathcal O(\sqrt n)\) 的时间暴力处理其前 \(\operatorname O(\sqrt n)\) 次修改,不多不少,\(\mathcal O(n\sqrt n)\),此后直接对于整块记录减法标记即可。

  对于询问,亦类似树剖求 LCA:

  • 若 \(u,v\) 不属于同一块,\(u\leftarrow \operatorname{top}(u),v\leftarrow\operatorname{top}(v)\);
  • 否则若 \(\operatorname{top}(u)\not=\operatorname{top}(v)\),令 \(\operatorname{top}\) 较大的结点为其 \(\operatorname{top}\);
  • 否则,令较深结点为其父亲。

  跳 \(\operatorname{top}\) 至多 \(\mathcal O(\sqrt n)\) 下;跳父亲只会在同块时跳 \(\mathcal O(\sqrt n)\) 次(然后必然结束询问),所以单次查询是 \(\mathcal O(\sqrt n)\) 的。

  综上,复杂度 \(\mathcal O((n+q)\sqrt n)\),让天依满意啦~

\(\mathcal{Code}\)

/* Clearink */#include <cmath>
#include <cstdio>#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )inline int rint() {
int x = 0, f = 1, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x * f;
}template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
}inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int imax( const int a, const int b ) { return a < b ? b : a; }const int MAXN = 1e5, MAXSN = 317;
int n, q, par[MAXN + 5];
int bsiz, bel[MAXN + 5], top[MAXN + 5], mcnt[MAXSN + 5], tag[MAXSN + 5];#define utop( i ) ( top[i] = bel[par[i]] != bel[i] ? par[i] : top[par[i]] )
#define gpar( i ) ( pushdn( bel[i] ), par[i] )
#define gtop( i ) ( mcnt[bel[i]] >= bsiz ? pushdn( bel[i] ), par[i] : top[i] )inline void init() {
bsiz = sqrt( 1. * n ), bel[1] = 1, bel[n + 1] = -1;
rep ( i, 2, n ) bel[i] = ( i - 1 ) / bsiz + 1, utop( i );
}inline void pushdn( const int i ) {
if ( !tag[i] ) return ;
int bl = ( i - 1 ) * bsiz + 1, br = imin( i * bsiz, n );
rep ( j, bl, br ) par[j] = imax( par[j] - tag[i], 1 );
// top[] is meaningless for this block.
tag[i] = 0;
}inline void modify( const int l, const int r, const int x ) {
pushdn( bel[l] );
for ( int i = l; bel[i] == bel[l]; ++i ) {
if ( i <= r ) par[i] = imax( par[i] - x, 1 );
utop( i );
}
if ( bel[l] == bel[r] ) return ;
rep ( i, bel[l] + 1, bel[r] - 1 ) {
if ( mcnt[i] >= bsiz ) { tag[i] += x; continue; }
++mcnt[i];
int bl = ( i - 1 ) * bsiz + 1, br = imin( i * bsiz, n );
rep ( j, bl, br ) par[j] = imax( par[j] - x, 1 ), utop( j );
}
pushdn( bel[r] );
for ( int i = ( bel[r] - 1 ) * bsiz + 1; bel[i] == bel[r]; ++i ) {
if ( i <= r ) par[i] = imax( par[i] - x, 1 );
utop( i );
}
}inline int query( int u, int v ) {
while ( u != v ) {
int tu = gtop( u ), tv = gtop( v );
if ( bel[u] != bel[v] ) bel[u] > bel[v] ? u = tu : v = tv;
else if ( tu != tv ) u = tu, v = tv;
else u > v ? u = gpar( u ) : v = gpar( v );
}
return u;
}int main() {
n = rint(), q = rint(), par[1] = 1;
rep ( i, 2, n ) par[i] = rint();
init();
for ( int op, u, v; q--; ) {
op = rint(), u = rint(), v = rint();
if ( op & 1 ) modify( u, v, rint() );
else wint( query( u, v ) ), putchar( '\n' );
}
return 0;
}
相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,488
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,903
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,737
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,489
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:8,128
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:5,290