首页 技术 正文
技术 2022年11月11日
0 收藏 821 点赞 3,308 浏览 722 个字

摘要:在随机森林之Bagging法中可以发现Bootstrap每次约有1/3的样本不会出现在Bootstrap所采集的样本集合中,当然也就没有参加决策树的建立,那是不是意味着就没有用了呢,答案是否定的。我们把这1/3的数据称为袋外数据oob(out of bag),它可以用于取代测试集误差估计方法.

在论文:

1:Bias,variance and prediction error for classification rules.<Robert Tibshiranni>

2: An Efficient Method To Estimate Baggin’s Generalization Error.<David H.Wolpert and William G.Macready>

3:Bagging Predictors,Machine Learning (1996)<Breiman>

中,作者都建议利用OOB error 估计作为泛化误差估计的一个组成部分,并且Breiman在论文中给出了经验性实例表明袋外数据误差估计与同训练集一样大小的测试集得到的精度一样,这样也就表明袋外数据(oob)误差估计是一种可以取代测试集的误差估计方法。

袋外数据(oob)误差的计算方法如下:

对于已经生成的随机森林,用袋外数据测试其性能,假设袋外数据总数为O,用这O个袋外数据作为输入,带进之前已经生成的随机森林分类器,分类器会给出O个数据相应的分类,因为这O条数据的类型是已知的,则用正确的分类与随机森林分类器的结果进行比较,统计随机森林分类器分类错误的数目,设为X,则袋外数据误差大小=X/O;这已经经过证明是无偏估计的,所以在随机森林算法中不需要再进行交叉验证或者单独的测试集来获取测试集误差的无偏估计。

相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,495
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,909
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,741
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,496
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:8,134
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:5,298