首页 技术 正文
技术 2022年11月9日
0 收藏 365 点赞 2,826 浏览 8553 个字

如果我们需要优化kernel程序,我们必须知道一些GPU的底层知识,本文简单介绍一下GPU内存相关和线程调度知识,并且用一个小示例演示如何简单根据内存结构优化。

一、GPU总线寻址和合并内存访问

假设X指向一个32位整数数组的指针,数组首地址是0x00001232,那么一个线程需要访问第0个成员时是也许是如下访问的:

int tmp = X[0]

假设内存总线宽度是256位,内存访问时必须和总线宽度对齐,所以内存只能访问0x00000020,0x00000040这种地址(0x20=256位),如果要访问0x00001232,那么内存必须同时获取0x00001220-0x0000123f的数据,一次获取了32字节的数据,但是我们有用的只有4字节,这就造成了28个字节的浪费。

事实上,GPU为了利用总线带宽,它会合并内存访问,尽量将多个线程读取内存合并到一起进行访问,例如我们有16个线程,每个线程访问4字节,总共需要访问0x00001232-0x00001272,如果不合并内存访问,那么他需要访问内存16次,每次浪费28字节空间;如果合并内存访问,它第一次访问0x00001220-0x0000123f,第二次访问0x00001240-0x0000125f,第三次访问0x00001260-0x0000133f,总共只需要访问三次,这样可以大大减少内存访问次数。优化kernel的性能。

二、性能优化

考虑一个矩阵相乘的问题,一个MXP的矩阵A,和一个P*N的矩阵B相乘得到MXN的C矩阵,在CPU中计算的代码入下:

#define M 1024
#define P 512
#define N 2048void RunAsCpu(
const float *A,
const float *B,
float* C)
{
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
C[i*N + j] = 0.0;
for (int k = 0; k < P; k++)
{
C[i*N + j] += A[i*P + k] * B[k*N + j];
}
}
}
}

如果使用GPU运行,那么通过降维操作,创建M*N个线程,第一个维度大小的M,第二个维度大小为N,kernel中代码可能如下:

__kernel void RunAsGpu_1(
__global float *A,
__global float *B,
int M,
int N,
int P,
__global float* C)
{
int x = get_global_id(0);
int y = get_global_id(1);
float sum = 0;
for(int i = 0;i<P;i++)
{
sum += A[x*P + i]*B[i*N + y];
}
C[x*N + y] = sum;
}

此时,如果思考一下,可能会发现,还有第二种方案,即第一个维度大小的N,第二个维度大小为M

__kernel void RunAsGpu_2(
__global float *A,
__global float *B,
int M,
int N,
int P,
__global float* C)
{
int x = get_global_id(0);
int y = get_global_id(1);
float sum = 0;
for(int i = 0;i<P;i++)
{
sum += A[y*P + i]*B[i*N + x];
}
C[y*N + x] = sum;
}

这两个kernel运行结果是一样的,那运行效率有什么不同呢?host文件用如下代码,然后运行一下看看效果:

#include <iostream>
#include <CL/cl.h>
#include <cassert>
#include <windows.h>
#include <ctime>
using namespace std;#define M 1024
#define P 512
#define N 2048void RunAsCpu(
const float *A,
const float *B,
float* C)
{
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
C[i*N + j] = 0.0;
for (int k = 0; k < P; k++)
{
C[i*N + j] += A[i*P + k] * B[k*N + j];
}
}
}
}//计时函数
double time_stamp()
{
LARGE_INTEGER curclock;
LARGE_INTEGER freq;
if (
!QueryPerformanceCounter(&curclock) ||
!QueryPerformanceFrequency(&freq)
)
{
return -1;
} return double(curclock.QuadPart) / freq.QuadPart;
}
#define OPENCL_CHECK_ERRORS(ERR) \
if(ERR != CL_SUCCESS) \
{ \
cerr \
<< "OpenCL error with code " << ERR \
<< " happened in file " << __FILE__ \
<< " at line " << __LINE__ \
<< ". Exiting...\n"; \
exit(1); \
}
int main(int argc, const char** argv)
{
cl_int error = 0; // Used to handle error codes
cl_context context;
cl_command_queue queue;
cl_device_id device; // 遍历系统中所有OpenCL平台
cl_uint num_of_platforms = 0;
// 得到平台数目
error = clGetPlatformIDs(0, 0, &num_of_platforms);
OPENCL_CHECK_ERRORS(error);
cout << "可用平台数: " << num_of_platforms << endl; cl_platform_id* platforms = new cl_platform_id[num_of_platforms];
// 得到所有平台的ID
error = clGetPlatformIDs(num_of_platforms, platforms, 0);
OPENCL_CHECK_ERRORS(error);
//遍历平台,选择一个Intel平台的
cl_uint selected_platform_index = num_of_platforms;
for (cl_uint i = 0; i < num_of_platforms; ++i)
{
size_t platform_name_length = 0;
error = clGetPlatformInfo(
platforms[i],
CL_PLATFORM_NAME,
0,
0,
&platform_name_length
);
OPENCL_CHECK_ERRORS(error); // 调用两次,第一次是得到名称的长度
char* platform_name = new char[platform_name_length];
error = clGetPlatformInfo(
platforms[i],
CL_PLATFORM_NAME,
platform_name_length,
platform_name,
0
);
OPENCL_CHECK_ERRORS(error); cout << " [" << i << "] " << platform_name; if (
strstr(platform_name, "Intel") &&
selected_platform_index == num_of_platforms // have not selected yet
)
{
cout << " [Selected]";
selected_platform_index = i;
} cout << endl;
delete[] platform_name;
}
if (selected_platform_index == num_of_platforms)
{
cerr
<< "没有找到Intel平台\n";
return 1;
}
// Device
cl_platform_id platform = platforms[selected_platform_index];
error = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
OPENCL_CHECK_ERRORS(error) // Context
context = clCreateContext(0, 1, &device, NULL, NULL, &error);
OPENCL_CHECK_ERRORS(error) // Command-queue CL_QUEUE_PROFILING_ENABLE开启才能计时
queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &error);
OPENCL_CHECK_ERRORS(error) //下面初始化测试数据(主机数据)
float* A_h = new float[M*P];
float* B_h = new float[P*N];
float* C_h = new float[M*N];
//srand((unsigned)time(NULL));
srand(100);
for (int i = 0; i < M*P; i++)
A_h[i] = rand() % 50; for (int i = 0; i < P*N; i++)
B_h[i] = rand() % 50;
//初始化设备数据
// 标志位表示数据只读,并且从nums1_h和nums2_h复制数据
cl_mem A_d = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*M*P, A_h, &error);
OPENCL_CHECK_ERRORS(error)
cl_mem B_d = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float)*P*N, B_h, &error);
OPENCL_CHECK_ERRORS(error)
cl_mem C_d = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float)*M*N, NULL, &error);
OPENCL_CHECK_ERRORS(error) cout << "CPU 运行开始:" << time_stamp() << endl;
RunAsCpu(A_h, B_h, C_h);
cout << "CPU 运行结束:" << time_stamp() << endl; //读取OpenCLSum.cl文件内容 FILE* fp = fopen("OpenCLMulMatrix.cl", "rb");
fseek(fp, 0, SEEK_END);
size_t src_size = ftell(fp);
fseek(fp, 0, SEEK_SET);
const char* source = new char[src_size];
fread((void*)source, 1, src_size, fp);
fclose(fp); //创建编译运行kernel函数
cl_program program = clCreateProgramWithSource(context, 1, &source, &src_size, &error);
OPENCL_CHECK_ERRORS(error)
delete[] source; // Builds the program
error = clBuildProgram(program, 1, &device, NULL, NULL, NULL);
OPENCL_CHECK_ERRORS(error) // Shows the log
char* build_log;
size_t log_size;
// First call to know the proper size
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
build_log = new char[log_size + 1];
// Second call to get the log
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, log_size, build_log, NULL);
build_log[log_size] = '\0';
cout << build_log << endl;
delete[] build_log; // Extracting the kernel
cl_kernel run_as_gpu_1 = clCreateKernel(program, "RunAsGpu_1", &error);
OPENCL_CHECK_ERRORS(error)
//设置kernel参数
cl_int M_d = M;
cl_int P_d = P;
cl_int N_d = N;
error = clSetKernelArg(run_as_gpu_1, 0, sizeof(cl_mem), &A_d);
error |= clSetKernelArg(run_as_gpu_1, 1, sizeof(cl_mem), &B_d);
error |= clSetKernelArg(run_as_gpu_1, 2, sizeof(int), &M_d);
error |= clSetKernelArg(run_as_gpu_1, 3, sizeof(int), &N_d);
error |= clSetKernelArg(run_as_gpu_1, 4, sizeof(int), &P_d);
error |= clSetKernelArg(run_as_gpu_1, 5, sizeof(cl_mem), &C_d);
OPENCL_CHECK_ERRORS(error) // 启动kernel
size_t globalws_1[2] = { M,N };
cl_event ev;
error = clEnqueueNDRangeKernel(queue, run_as_gpu_1, 2, NULL, globalws_1, NULL, 0, NULL, &ev);
clFinish(queue);
OPENCL_CHECK_ERRORS(error)
//计算kerenl执行时间
cl_ulong startTime, endTime;
clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_START,
sizeof(cl_ulong), &startTime, NULL);
clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &endTime, NULL);
cl_ulong kernelExecTimeNs = endTime - startTime;
printf("Gpu_1运行时间 :%8.6f ms\n", kernelExecTimeNs*1e-6); //取得kernel返回值
float* gpu_C_1 = new float[M*N];
clEnqueueReadBuffer(queue, C_d, CL_TRUE, 0, M*N*sizeof(float), gpu_C_1, 0, NULL, NULL);
assert(memcmp(C_h, gpu_C_1, M*N * sizeof(float)) == 0); // Extracting the kernel
cl_kernel run_as_gpu_2 = clCreateKernel(program, "RunAsGpu_2", &error);
OPENCL_CHECK_ERRORS(error)
//设置kernel参数
error = clSetKernelArg(run_as_gpu_2, 0, sizeof(cl_mem), &A_d);
error |= clSetKernelArg(run_as_gpu_2, 1, sizeof(cl_mem), &B_d);
error |= clSetKernelArg(run_as_gpu_2, 2, sizeof(int), &M_d);
error |= clSetKernelArg(run_as_gpu_2, 3, sizeof(int), &N_d);
error |= clSetKernelArg(run_as_gpu_2, 4, sizeof(int), &P_d);
error |= clSetKernelArg(run_as_gpu_2, 5, sizeof(cl_mem), &C_d);
OPENCL_CHECK_ERRORS(error) // 启动kernel
size_t globalws_2[2] = { N,M };
error = clEnqueueNDRangeKernel(queue, run_as_gpu_2, 2, NULL, globalws_2, NULL, 0, NULL, &ev);
clFinish(queue);
OPENCL_CHECK_ERRORS(error)
//计算kerenl执行时间
clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_START,
sizeof(cl_ulong), &startTime, NULL);
clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &endTime, NULL);
kernelExecTimeNs = endTime - startTime;
printf("Gpu_2运行时间 :%8.6f ms\n", kernelExecTimeNs*1e-6);
//取得kernel返回值
float* gpu_C_2 = new float[M*N];
clEnqueueReadBuffer(queue, C_d, CL_TRUE, 0, M*N * sizeof(float), gpu_C_2, 0, NULL, NULL); assert(memcmp(C_h, gpu_C_2, M*N * sizeof(float)) == 0); error = clEnqueueNDRangeKernel(queue, run_as_gpu_1, 2, NULL, globalws_1, NULL, 0, NULL, &ev);
clFinish(queue);
OPENCL_CHECK_ERRORS(error)
//计算kerenl执行时间
clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_START,
sizeof(cl_ulong), &startTime, NULL);
clGetEventProfilingInfo(ev, CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &endTime, NULL);
kernelExecTimeNs = endTime - startTime;
printf("Gpu_1运行时间 :%8.6f ms\n", kernelExecTimeNs*1e-6); delete[] A_h;
delete[] B_h;
delete[] C_h;
delete[] gpu_C_1;
delete[] gpu_C_2;
delete[] platforms;
clReleaseKernel(run_as_gpu_1);
clReleaseKernel(run_as_gpu_2);
clReleaseCommandQueue(queue);
clReleaseContext(context);
clReleaseMemObject(A_d);
clReleaseMemObject(B_d);
clReleaseMemObject(C_d);
return 0;
}

三、运行结果

这里可以看出,两个方案虽然结果一样,但是效率是有很大差别的,原因是什么呢?上面说到,GPU会合并内存访问来优化性能,多维情况下,内存空间是按照行主序的方式储存的,如下图,一个5列的二维数组内存排列方式如下:

而在GPU执行过程中,他是先执行第一个纬度,再执行第二个纬度。所以,在第一种情况下,第一维是M,第二维是N,此时,B和C的内存无法合并访问(访问顺序是00 10 20 30 40 01 11 21 …)

在第二种情况下,B和C的内存可以合并访问(访问顺序是00 01 02 03 04 11 12 13 …)

合并访问会减小内存请求,优化性能。

四、其他示例

试试添加一个kernel函数,测试它的运行时间。

__kernel void RunAsGpu_3(
__global float *A,
__global float *B,
int M,
int N,
int P,
__global float* C)
{
int x = get_global_id(0);
int y = get_global_id(1);
C[x*N + y] = 0;
for(int i = 0;i<P;i++)
{
C[x*N + y] += A[x*P + i]*B[i*N + y];
}
}

五、相关下载

代码下载

相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,487
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,903
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,736
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,486
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:8,126
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:5,287