首页 技术 正文
技术 2022年11月16日
0 收藏 319 点赞 3,931 浏览 4513 个字

前置芝士的光速幂技巧。

本题解不是正解,和正解唯一的差别在于对幂的处理。

我们能够发现有:

\[F(n,m,k)=\frac 1 n \binom {n+m-1} m
\]

证明见这里

然后我们开始推柿子:

\[\prod_{i=1}^n\prod_{j=1}^m\prod_{x=0}^k(\frac 1 i \binom {i+j-1} j )^{[\gcd(i,j)=1]}
\]\[(\prod_{i=1}^n\prod_{j=1}^m(\frac {(i+j-1)!} {i!j!})^{[\gcd(i,j)=1]})^{k+1}
\]

此时我们可以把答案拆成两部分:

\[\prod_{i=1}^n\prod_{j=1}^m((i+j-1)!)^{[\gcd(i,j)=1]}
\]\[\prod_{i=1}^n\prod_{j=1}^m(i!j!)^{[\gcd(i,j)=1]}
\]

1

\[\prod_{i=1}^n\prod_{j=1}^m((i+j-1)!)^{\sum_{d|i,d|j}\mu(d)}
\]\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} (di+dj-1)!^{\mu(d)}
\]\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} \frac {(d(i+j))!^{\mu(d)}} {(d(i+j))^{\mu(d)}}
\]

1.1

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} {(d(i+j))!^{\mu(d)}}
\]

真正的毒瘤。

\[\prod_{d=1}^n\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}}(dk)!^{num_{{\lfloor \frac n d \rfloor},{\lfloor \frac m d \rfloor}}[k]\mu(d)}
\]\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor}(dk)!^{(k-1)\mu(d)} \times\prod_{k={\lfloor \frac n d \rfloor}+1}^{{\lfloor \frac m d \rfloor}} (dk)!^{{\lfloor \frac n d \rfloor}\mu(d)} \times \prod_{k={\lfloor \frac m d \rfloor}+1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}-k+1)\mu(d)}
\]

1.1.1

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{(k-1)\mu(d)}
\]\[\prod_{d=1}^nd!^{\sum_{k|d} k \mu(\frac d k)} \div \prod_{d=1}^n d!^{\sum_{k|d}\mu(\frac d k)}
\]\[\prod_{d=1}^nd!^{\varphi(d)}
\]

有趣的一点是,这玩意儿和 \(\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{k\mu(d)}\) 是一个东西。以及这玩意儿和后面的 \(1.1.3.1\) 是一样的,所以可以不用推。。。

1.1.2

\[\prod_{d=1}^n\prod_{k={\lfloor \frac n d \rfloor}+1}^{\lfloor \frac m d \rfloor} (dk)^{{\lfloor \frac n d \rfloor}\mu(d)}
\]\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)^{{\lfloor \frac n d \rfloor}\mu(d)} \div \prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{{\lfloor \frac n d \rfloor}\mu(d)}
\]

右边:

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{\mu(d){\lfloor \frac n d \rfloor}}
\]\[\prod_{d=1}^n(\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{\mu(d)})^{\lfloor \frac n d \rfloor}
\]

设:

\[f_1(d,n)=\prod_{k=1}^n(dk)!^{\mu(d)}
\]

可以发现:

\[f_1(d,n)=f_1(d,n-1) \times (dn)!^{\mu(d)}
\]

\((dn)!^{mu(d)}\) 用光速幂搞定,(这里的 \(dn\) 一定不大于数据范围)就可以 \(O(n\log n)\) 递推 \(f_1\) 了。

这一部分最终能够推得:

\[\prod_{d=1}^n f_1(d,{\lfloor \frac n d \rfloor})^{\lfloor \frac n d \rfloor}
\]

对 \(f_1\) 在第二维度上做前缀积即可整除分块带走。

左边的和右边的是一样的,就不再论述了。

1.1.3

\[\prod_{d=1}^n\prod_{k={\lfloor \frac m d \rfloor}+1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}-k+1)\mu(d)}
\]

它 是 毒 瘤

首先拆一下:

\[\prod_{d=1}^n((\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor})\mu(d)} \div \prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor})\mu(d)})
\]\[\div (\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{k\mu(d)} \div \prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{k\mu(d)})
\]\[\times (\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{\mu(d)} \div \prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{\mu(d)}))
\]

后面四个好像容易一些,先搞后面四个。

1.1.3.1

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor}(dk)!^{k\mu(d)}
\]

设:

\[f_2(d,n)=\prod_{k=1}^n(dk)!^{k\mu(d)}
\]

明显有:

\[f_2(d,n)=f_2(d,n-1) \times (dn)!^{n\mu(d)}
\]

和 \(f_1\) 一样即可以 \(O(n\log n)\) 处理这玩意儿。

1.1.3.2

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{\mu(d)}
\]

你发现这玩意儿就是 \(f_1\),所以可以直接草了。

1.1.3.3

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor})\mu(d)}
\]

这玩意儿好像就只是 \(f_1\) 加上了一个幂?用一个光速幂就可以带走了。

1.2

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} {(d(i+j))^{\mu(d)}}
\]

这一部分几乎和 \(1.1\) 是相同的,所以不再论述,将 \((dk)!\) 换成 \((dk)\) 即可。

2

\[\prod_{i=1}^n\prod_{j=1}^m(i!j!)^{\sum_{d|i,d|j} \mu(d)}
\]

其实这一部分明显比前面简单得多,以至于我前面刚写完就以为整个题解写完了(

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{i=1}^{\lfloor \frac m d \rfloor}(di)!^{\mu(d)}(dj)!^{\mu(d)}
\]\[\prod_{d=1}^n(\prod_{i=1}^{\lfloor \frac n d \rfloor}(di)!^{\mu(d){\lfloor \frac m d \rfloor}} \times \prod_{i=1}^{\lfloor \frac m d \rfloor}(dj)!^{\mu(d){\lfloor \frac n d \rfloor}})
\]\[\prod_{d=1}^n(\prod_{i=1}^{\lfloor \frac n d \rfloor} (di)!^{\mu(d)})^{\lfloor \frac m d \rfloor} \times (\prod_{d=1}^n \prod_{j=1}^{\lfloor \frac m d \rfloor} (dj)!^{\mu(d)})^{\lfloor \frac n d \rfloor}
\]

我们发现这玩意儿就是 \(f_3\),直接光速幂即可。

虽然复杂度是 \(O(n^{\frac 5 4}\log n+T\sqrt n)\) 的,但是常数巨大。。。

以及,光速幂空间过大,所以可能需要 \(\rm vector\) 来实现,以及离线卡常。

来想想需要对哪些东西预处理光速幂

\(f_1\)和 \(1.2\) 中的 “\(f_1\)”。长度分别为 \(O(n\log n)\) 和 \(O(n\log n)\)。

对二者同时光速幂。注意光速幂离线后一共有 \(O(n\log n)\) 个底数,对其分块后可以卡进 cache,对上面的二者同步预处理光速幂即可。

相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,492
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,907
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,740
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,494
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:8,132
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:5,295